Waterflai
  • Welcome to Waterflai
  • Getting Started
    • Concepts
    • Quickstart
  • Providers
    • Providers Overview
    • Providers setup
    • AI models
    • Choose the right models
  • Knowledge
    • Knowledge Overview
    • Knowledge connectors
    • Knowledge collections
  • Studio
    • Studio Overview
    • Studio Builders
      • Light Builder
      • Dream Builder
      • Workflow Builder
      • Flow components (nodes)
        • Input Node
        • Output Node
        • LLM model Node
        • Multimodal LLM Node
        • Dall-E 2 (image generation) Node
        • Dall-E 3 (image generation) Node
        • Sora video generation Node
        • Text-to-Speech (TTS) Node
        • Speech-to-Text (STT) Node
        • OCR Node
        • Agent Node
        • Reranker Node
        • Knowledge retrieval Node
        • Vector store insert Node
        • Vector store record delete Node
        • Gitbook loader
        • Notion Database Node
        • Figma Node
        • Webpage scraper Node
        • Sitemap Scraper Node
        • API Request Node
        • Document metadata extraction Node
        • Document metadata update Node
        • Character splitter Node
        • HTML splitter Node
        • Markdown Splitter
        • Calculator tool Node
        • Text as tool Node
        • Knowledge retrieval tool Node
        • Conditional Node
        • Iteration loop Node
      • Testing and Debugging
    • Publishing
    • Integration with API
    • Embedding in website
  • Analytics
    • Analytics Overview
    • Dashboards
    • Logs
  • Administration
    • Organization users
    • Workspace
    • Security and permissions
  • Troubleshooting
    • Support
Powered by GitBook
On this page
  • Overview
  • Configuration
  • Best Practices
  1. Studio
  2. Studio Builders
  3. Flow components (nodes)

Reranker Node

Overview

The Reranker Node optimizes document retrieval by reordering a set of documents based on their relevance to a specific query. It uses specialized reranking models to improve the accuracy and relevance of search results by considering semantic similarity and contextual information.

Usage cost: 1 credit

Configuration

Settings

  1. Model Selection

    • Reranker Model*: Select the reranking model to use

    • Top K: Number of documents to return after reranking (default: 3)

    • Query*: The search query used to rerank documents

    • Documents*: List of documents to be reranked

Output Ports

  • reranked_documents (Document[]): Array of reranked documents ordered by relevance

Best Practices

  1. Document Preparation

    • Keep document segments concise and focused

    • Ensure documents contain meaningful content

    • Remove duplicate or near-duplicate content

  2. Query Optimization

    • Use specific, targeted queries

    • Include key terms and concepts

    • Consider query expansion when needed

    • Use consistent query formatting

  3. Performance Tuning

    • Adjust Top K based on use case requirements

    • Consider document batch size

  4. Integration Tips

    • Place after retrieval nodes

    • Connect to document transformation nodes when needed

PreviousAgent NodeNextKnowledge retrieval Node

Last updated 3 months ago