Waterflai
  • Welcome to Waterflai
  • Getting Started
    • Concepts
    • Quickstart
  • Providers
    • Providers Overview
    • Providers setup
    • AI models
    • Choose the right models
  • Knowledge
    • Knowledge Overview
    • Knowledge connectors
    • Knowledge collections
  • Studio
    • Studio Overview
    • Studio Builders
      • Light Builder
      • Dream Builder
      • Workflow Builder
      • Flow components (nodes)
        • Input Node
        • Output Node
        • LLM model Node
        • Multimodal LLM Node
        • Dall-E 2 (image generation) Node
        • Dall-E 3 (image generation) Node
        • Sora video generation Node
        • Text-to-Speech (TTS) Node
        • Speech-to-Text (STT) Node
        • OCR Node
        • Agent Node
        • Reranker Node
        • Knowledge retrieval Node
        • Vector store insert Node
        • Vector store record delete Node
        • Gitbook loader
        • Notion Database Node
        • Figma Node
        • Webpage scraper Node
        • Sitemap Scraper Node
        • API Request Node
        • Document metadata extraction Node
        • Document metadata update Node
        • Character splitter Node
        • HTML splitter Node
        • Markdown Splitter
        • Calculator tool Node
        • Text as tool Node
        • Knowledge retrieval tool Node
        • Conditional Node
        • Iteration loop Node
      • Testing and Debugging
    • Publishing
    • Integration with API
    • Embedding in website
  • Analytics
    • Analytics Overview
    • Dashboards
    • Logs
  • Administration
    • Organization users
    • Workspace
    • Security and permissions
  • Troubleshooting
    • Support
Powered by GitBook
On this page
  • Overview
  • Configuration
  • Filtering example depending on vector store
  • Best Practices
  1. Studio
  2. Studio Builders
  3. Flow components (nodes)

Knowledge retrieval Node

Overview

The Knowledge Retrieval Node searches and retrieves relevant documents from your knowledge collections based on a query. It supports semantic search through vector embeddings and allows filtering of results using vector store-specific filtering syntax. Each knowledge collection can be configured with different vector stores (Milvus, Qdrant, Chroma, Pinecone, ...).

Usage cost: 0.1 credit / document

Configuration

Settings

  1. Collection Selection

    • Collection*: Select the knowledge collection to search

    • Number of Documents: Number of results to return (default: 5)

    • Query*: Search query used to find relevant documents

    • Filtering: Optional filtering condition based on metadata

Output Ports

  • knowledges (Document[]): Retrieved documents with full metadata

  • documents_content (string[]): Array of document contents only

Filtering example depending on vector store

Milvus/Zilliz

metadata["field"] == "value"

Qdrant

{
  "must": [
    {"key": "metadata.field", "match": {"value": "exact_match"}}
  ]
}

Chroma

{
  "field": {"$eq": "value"}
}

Pinecone

{
  "field": {"$eq": "value"}
}

Best Practices

  1. Query Construction

    • Keep queries clear and focused

    • Include key terms relevant to desired content

    • Consider semantic meaning rather than exact keywords

    • Test queries with different phrasings

  2. Result Optimization

    • Adjust number of documents based on use case

    • Use filtering to narrow down results, or to built multi-tenant data retrieval

    • Consider document length when setting limits

  3. Filtering Usage

    • Follow vector store-specific syntax

    • Test filters with sample data

    • Use appropriate operators for data types

For vector store specific filter syntax, refer to:

PreviousReranker NodeNextVector store insert Node

Last updated 3 months ago

Milvus:

Zilliz:

Qdrant:

Chroma:

Pinecone:

Filtering Documentation
Filtering Documentation
Filtering Documentation
Where Filters Documentation
Metadata Filtering Guide