Waterflai
  • Welcome to Waterflai
  • Getting Started
    • Concepts
    • Quickstart
  • Providers
    • Providers Overview
    • Providers setup
    • AI models
    • Choose the right models
  • Knowledge
    • Knowledge Overview
    • Knowledge connectors
    • Knowledge collections
  • Studio
    • Studio Overview
    • Studio Builders
      • Light Builder
      • Dream Builder
      • Workflow Builder
      • Flow components (nodes)
        • Input Node
        • Output Node
        • LLM model Node
        • Multimodal LLM Node
        • Dall-E 2 (image generation) Node
        • Dall-E 3 (image generation) Node
        • Sora video generation Node
        • Text-to-Speech (TTS) Node
        • Speech-to-Text (STT) Node
        • OCR Node
        • Agent Node
        • Reranker Node
        • Knowledge retrieval Node
        • Vector store insert Node
        • Vector store record delete Node
        • Gitbook loader
        • Notion Database Node
        • Figma Node
        • Webpage scraper Node
        • Sitemap Scraper Node
        • API Request Node
        • Document metadata extraction Node
        • Document metadata update Node
        • Character splitter Node
        • HTML splitter Node
        • Markdown Splitter
        • Calculator tool Node
        • Text as tool Node
        • Knowledge retrieval tool Node
        • Conditional Node
        • Iteration loop Node
      • Testing and Debugging
    • Publishing
    • Integration with API
    • Embedding in website
  • Analytics
    • Analytics Overview
    • Dashboards
    • Logs
  • Administration
    • Organization users
    • Workspace
    • Security and permissions
  • Troubleshooting
    • Support
Powered by GitBook
On this page
  • Overview
  • Configuration
  • Best Practices
  • Common Issues
  1. Studio
  2. Studio Builders
  3. Flow components (nodes)

Knowledge retrieval tool Node

Overview

The Knowledge Retrieval Tool Node creates a tool that enables agents to search and retrieve information from vector store collections. It provides semantic search capabilities with customizable filtering options and can be used to integrate knowledge bases into agent-based flows.

Usage cost: 1 credit

Configuration

Settings

  1. Collection Settings

    • Collection*: Select the vector store collection to search

    • Number of Documents*: Specify how many documents to retrieve (minimum 1)

  2. Tool Configuration

    • Tool Name*: Unique identifier for the tool (no spaces)

    • Tool Description*: Explanation of when and how to use the tool

    • Filtering: Optional conditions to filter search results

Output Ports

  • retrieval_tool (Tool): A tool object that:

    • Searches the specified collection

    • Returns relevant documents

    • Applies configured filters

    • Maintains metadata

Best Practices

  1. Tool Configuration

    • Use clear, descriptive tool names

    • Write comprehensive descriptions

    • Set appropriate document limits

    • Consider search context

  2. Filter Design

    • Follow vector store syntax

    • Test filters thoroughly

    • Use variables strategically

  3. Performance

    • Optimize document count

    • Design efficient filters

Common Issues

  • Invalid filter syntax

  • Excessive document retrieval

  • Filter parsing errors

  • Collection connectivity issues

For vector store specific filter syntax, refer to:

PreviousText as tool NodeNextConditional Node

Last updated 3 months ago

Milvus:

Zilliz:

Qdrant:

Chroma:

Pinecone:

Filtering Documentation
Filtering Documentation
Filtering Documentation
Where Filters Documentation
Metadata Filtering Guide