Waterflai
  • Welcome to Waterflai
  • Getting Started
    • Concepts
    • Quickstart
  • Providers
    • Providers Overview
    • Providers setup
    • AI models
    • Choose the right models
  • Knowledge
    • Knowledge Overview
    • Knowledge connectors
    • Knowledge collections
  • Studio
    • Studio Overview
    • Studio Builders
      • Light Builder
      • Dream Builder
      • Workflow Builder
      • Flow components (nodes)
        • Input Node
        • Output Node
        • LLM model Node
        • Multimodal LLM Node
        • Dall-E 2 (image generation) Node
        • Dall-E 3 (image generation) Node
        • Sora video generation Node
        • Text-to-Speech (TTS) Node
        • Speech-to-Text (STT) Node
        • OCR Node
        • Agent Node
        • Reranker Node
        • Knowledge retrieval Node
        • Vector store insert Node
        • Vector store record delete Node
        • Gitbook loader
        • Notion Database Node
        • Figma Node
        • Webpage scraper Node
        • Sitemap Scraper Node
        • API Request Node
        • Document metadata extraction Node
        • Document metadata update Node
        • Character splitter Node
        • HTML splitter Node
        • Markdown Splitter
        • Calculator tool Node
        • Text as tool Node
        • Knowledge retrieval tool Node
        • Conditional Node
        • Iteration loop Node
      • Testing and Debugging
    • Publishing
    • Integration with API
    • Embedding in website
  • Analytics
    • Analytics Overview
    • Dashboards
    • Logs
  • Administration
    • Organization users
    • Workspace
    • Security and permissions
  • Troubleshooting
    • Support
Powered by GitBook
On this page
  • Overview
  • Configuration Settings
  • Outputs
  • Best Practices
  • Common Issues
  1. Studio
  2. Studio Builders
  3. Flow components (nodes)

Dall-E 2 (image generation) Node

Overview

The DALL-E 2 Node enables your flow to generate images using OpenAI's DALL-E 2 model. This node transforms text descriptions into high-quality images, making it ideal for applications requiring automated image generation, creative content production, or visual asset creation.

Usage cost: 2 credits

Configuration Settings

  1. Model Selection

    • Model*: Select OpenAI's DALL-E 2 model from available providers

    • Note: Only OpenAI provider is supported for DALL-E 2

  2. Image Generation

    • Prompt*: Text description of the image to generate

    • Image Size*: Select output resolution

      • 256x256: Small size, faster generation

      • 512x512: Medium size, balanced option

      • 1024x1024: Large size, highest detail

Outputs

  • image (Image): Generated image object for use in subsequent nodes

  • base64_image (string): Base64-encoded image data

Best Practices

  1. Prompt Engineering

    • Be specific and detailed in descriptions

    • Include key visual elements:

      • Style (e.g., "photorealistic", "oil painting", "3D render")

      • Composition (e.g., "close-up", "wide angle", "overhead view")

      • Lighting (e.g., "bright", "moody", "natural lighting")

      • Colors (e.g., "vibrant", "pastel", "monochromatic")

    • Maintain prompt clarity and coherence

  2. Size Selection

    • Choose 256x256 for:

      • Thumbnails and previews

      • Quick iterations and testing

      • Resource-efficient generation

    • Choose 512x512 for:

      • Medium-quality assets

      • Social media content

      • Balance between quality and speed

    • Choose 1024x1024 for:

      • High-quality visuals

      • Detailed illustrations

      • Professional content

Common Issues

  • API rate limiting

  • Network timeouts during image fetching

PreviousMultimodal LLM NodeNextDall-E 3 (image generation) Node

Last updated 3 months ago